科研團(tuán)隊(duì)使用光操控反鐵磁材料實(shí)現(xiàn)磁態(tài)轉(zhuǎn)換據(jù)最新一期《自然》雜志,美國(guó)麻省理工學(xué)院科研團(tuán)隊(duì)僅使用光就在反鐵磁材料中實(shí)現(xiàn)了磁態(tài)轉(zhuǎn)換,創(chuàng)造出一種新型且持久的磁態(tài)。這一技術(shù)為研究人員提供了控制磁性的強(qiáng)大工具,有助于設(shè)計(jì)更快、更小、更節(jié)能的內(nèi)存芯片。 反鐵磁體由自旋方向交替的原子組成,每個(gè)原子的自旋方向都與其相鄰原子的自旋方向相反。這種上、下、上、下的順序基本抵消了自旋,使反鐵磁體總磁化強(qiáng)度為零,從而不受任何磁力影響。 如果能用反鐵磁材料制成內(nèi)存芯片,就可將數(shù)據(jù)“寫(xiě)入”材料的微觀區(qū)域,即磁疇。在給定磁疇中,自旋方向的某種配置(例如,上—下)代表經(jīng)典的比特“0”,而另一種配置(下—上)則代表“1”。在這樣的芯片上寫(xiě)入數(shù)據(jù),能抵御外部磁場(chǎng)的干擾。 由于磁疇的穩(wěn)定性,反鐵磁體可整合到未來(lái)的內(nèi)存芯片中,使這些芯片能耗更少、占用空間更小,同時(shí)存儲(chǔ)和處理的數(shù)據(jù)更多。然而,將反鐵磁材料應(yīng)用于存儲(chǔ)技術(shù)的一個(gè)主要障礙在于,如何以可靠方式控制反鐵磁體,使其從一種磁態(tài)轉(zhuǎn)換到另一種磁態(tài)。 此次,團(tuán)隊(duì)使用太赫茲激光器直接刺激反鐵磁材料中的原子。激光器的振蕩頻率被調(diào)至與材料原子間的自然振動(dòng)相匹配,從而改變?cè)幼孕钠胶,使其向一種新的磁態(tài)轉(zhuǎn)變。 所用材料為FePS3——一種在臨界溫度(約118K)時(shí)轉(zhuǎn)變?yōu)榉磋F磁相的材料。他們將合成的FePS3樣品置于真空室中,冷卻至118K及以下溫度。然后,他們讓一束近紅外光穿過(guò)有機(jī)晶體,將光轉(zhuǎn)換為太赫茲頻率,從而產(chǎn)生太赫茲脈沖。之后,他們將這束太赫茲光對(duì)準(zhǔn)樣品。 在多次重復(fù)實(shí)驗(yàn)中,團(tuán)隊(duì)觀察到,太赫茲脈沖成功地將原本為反鐵磁性的材料切換到了一個(gè)新的磁態(tài)。這一轉(zhuǎn)變出乎意料地持久,甚至在激光關(guān)閉后仍能持續(xù)數(shù)毫秒。 |
已經(jīng)是第一篇
下一篇:量子技術(shù)的革命:手掌大小的激光器打 ..
|