切換到寬版
  • 廣告投放
  • 稿件投遞
  • 繁體中文
    • 1356閱讀
    • 0回復(fù)

    [分享]用于仿真和分析激光晶體封裝技術(shù)中誘導(dǎo)應(yīng)力的方法 [復(fù)制鏈接]

    上一主題 下一主題
    離線infotek
     
    發(fā)帖
    5495
    光幣
    21639
    光券
    0
    只看樓主 倒序閱讀 樓主  發(fā)表于: 2020-10-26
    POL RIBES-PLEGUEZUELO,1,2,*SITE ZHANG,2ERIK BECKERT,1 RAMONA EBERHARDT,1FRANK WYROWSKI,2AND ANDREAS TüNNERMANN1,2 ^xwFjQXx  
    1 Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany 4#w^PM8}  
    2 Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany *pol.ribes@iof.fraunhofer.de
    K;PpS*!  
    !)=o,sVA  
    摘要 a5M>1&j/eC  
    Q:\hh=^  
    提出了一種用來(lái)仿真激光晶體封裝技術(shù)中的誘導(dǎo)應(yīng)力的方法,并對(duì)激光腔內(nèi)部的雙折射效應(yīng)進(jìn)行研究。這種方法已經(jīng)由軟件ANSYS 17.0通過(guò)熱機(jī)械仿真來(lái)實(shí)現(xiàn)。ANSYS的結(jié)果稍后被導(dǎo)入到VirtualLab Fusion軟件中,這款軟件按照波長(zhǎng)及偏振性對(duì)輸入輸出光束進(jìn)行分析。研究是建立在一種用于玻璃或晶體光學(xué)封裝中低應(yīng)力焊接技術(shù),也被稱作焊機(jī)泵浦技術(shù)的背景下。分析結(jié)果表明對(duì)于由釔鋁石榴石活性激光晶體構(gòu)建的激光腔,二次諧波發(fā)生器β-鋇硼酸鹽,以及由低應(yīng)力焊機(jī)泵浦技術(shù)組裝的熔融石英的輸出激光鏡來(lái)說(shuō),輸入及輸出激光光束幾乎沒(méi)有差異。 p rgjU  
    ○c2017 Optical Society of America OCIS codes: (140.0140) Lasers and laser optics; (220.0220) Optical design and fabrication; (260.1440) Birefringence. F?kVW[h?q  
    2LU'C,o?  
    參考及鏈接 %"zJsYQ!  
    `,Gk1~Wv  
    1. S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, G. Viera. “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics,Greece 2010. Ah6x2(:  
    2. P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, A. Tünnermann,“High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt.Eng. 55(6), 065101 (2016). }TW=eu~  
    3. E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A.Tünnermann, F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406. o{p_s0IX;S  
    4. W. Koechner, Solid-State Laser Engineering (Springer, 1999). B(LV22#  
    5. C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, A. Tünnermann “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092 (2014). |Y11sDa9h  
    6. J. F. Nye, Physical properties of crystals (Oxford Universty, 2010). rE:>G]j6  
    7. Q. Lü, U. Wittrock, S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995). .)w0C%]  
    8. G. Golub, and F. Charles, Matrix Computations (Johns Hopkins University, 1983). ~@a R5Q>us  
    9. H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951). P}`1#$  
    10. F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt. 58, 449–466 (2011). * U4:K@y  
    11. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). }o- P   
    12. G. D. Landry and T. A. Maldonado, “Gaussian beam transmission and reflection from a general anisotropic multilayer structure,” Appl. Opt. 35, 5870–5879 (1996). h6