摘要:多軸聯(lián)動(dòng)數(shù)控加工
編程是大型雕塑曲面零件加工的最重要任務(wù)之一。本文介紹五軸聯(lián)動(dòng)數(shù)控加工大型雕塑曲面編程中涉及到的刀位軌跡計(jì)算、切削仿真、
機(jī)床運(yùn)動(dòng)碰撞仿真、后置變換等關(guān)鍵技術(shù)。針對(duì)這些技術(shù)進(jìn)行研究開發(fā),實(shí)現(xiàn)了大型水輪機(jī)葉片的五軸聯(lián)動(dòng)數(shù)控加工,并成為葉片加工的編程工具。
UB|Nx(V s ~ I]kY% 關(guān)鍵詞:數(shù)控編程;CAM;數(shù)控加工;曲面加工
UN`-;! |ZJ]`qmZ 1. 引言
m qPWCFP W6K]jIQ 大型雕塑零件的數(shù)控加工是一項(xiàng)非常艱巨的任務(wù),如大型水輪機(jī)葉片、螺旋槳葉片等是由多張雕塑曲面組成的封閉曲面體零件,其加工面積從幾平方米到數(shù)十平方米。采用五軸聯(lián)動(dòng)數(shù)控加工是目前最有效的加工方法,但是通用CAD/CAM軟件并不能完全或者很好地解決這類復(fù)雜雕塑曲面零件的五軸聯(lián)動(dòng)加工編程問題[1]。大型雕塑曲面零件的數(shù)控加工編程是實(shí)現(xiàn)其數(shù)字化制造的關(guān)鍵技術(shù)之一[2],它涉及加工工藝規(guī)劃、計(jì)算機(jī)技術(shù)、數(shù)學(xué)、計(jì)算幾何、微分幾何、人工智能等眾多學(xué)科領(lǐng)域的知識(shí),其數(shù)控編程過程是一個(gè)數(shù)字化仿真評(píng)價(jià)及優(yōu)化的過程。雕塑曲面零件的數(shù)控編程是在幾何造型和加工工藝規(guī)劃的基礎(chǔ)上,在計(jì)算機(jī)上進(jìn)行刀位軌跡計(jì)算、仿真、優(yōu)化并驗(yàn)證加工過程,以有效地生成滿足五軸聯(lián)動(dòng)加工要求的高質(zhì)量數(shù)控加工程序。大型雕塑曲面零件數(shù)控加工編程涉及多方面的技術(shù),其關(guān)鍵技術(shù)包括[1-5]:①雕塑曲面的三維幾何造型;②根據(jù)零件上各張雕塑曲面的性態(tài),合理地進(jìn)行刀位軌跡規(guī)劃和計(jì)算;③切削仿真與
刀具干涉檢驗(yàn);④機(jī)床運(yùn)動(dòng)仿真與碰撞干涉檢驗(yàn);⑤機(jī)床運(yùn)動(dòng)的后置變換;
-qs.'o
;2 wS%I. 2. 大型雕塑曲面零件數(shù)控加工編程的流程
B:n9*<v( -F4CHpua 大型雕塑曲面零件的五軸聯(lián)動(dòng)數(shù)控加工編程比一般零件加工編程復(fù)雜得多,主要采用離線編程方式。為了保證數(shù)控加工程序的可靠性,一般采用針對(duì)具體的加工對(duì)象特點(diǎn)和要求,在通用的
CAM軟件進(jìn)行二次開發(fā)來完成刀位軌跡計(jì)算、切削仿真與機(jī)床運(yùn)動(dòng)仿真。各具體的雕塑曲面零件雖然有獨(dú)自的特點(diǎn),但是這類零件的數(shù)控加工中編程過程基本一致。以大型葉片類零件為例[2],我們?cè)赟DRC/ Camand®軟件上進(jìn)行開發(fā)實(shí)現(xiàn)的的編程過程如圖1所示。
<&8cq@< pA!+;Y!ZB< A_{QY&%m Fw!5hR`, 3. 大型雕塑曲面五軸聯(lián)動(dòng)數(shù)控加工的刀位軌跡生成
CP7Zin1S/w v8y77: 五軸聯(lián)動(dòng)數(shù)控加工的刀位軌跡計(jì)算是大型雕塑曲面零件加工中一個(gè)很重要的問題,為了獲得好的表面質(zhì)量和高的加工效率,要求在零件上不同區(qū)域的曲面形狀需要采取與之相適應(yīng)的加工方式。高質(zhì)量的刀具軌跡生成方法除應(yīng)保證編程
精度和無干涉外,同時(shí)應(yīng)滿足通用性好、加工效率高、代碼量小等等條件。對(duì)于雕塑曲面的多軸聯(lián)動(dòng)端銑加工,均采用行切加工方式,各種行切加工方式均可歸結(jié)為曲面上曲線的加工問題,這樣就提出了如何根據(jù)加工的曲面生成正確的刀位軌跡的問題。由曲面模型生成無干涉刀位數(shù)據(jù)主要有以下幾種方法:& #129;曲面模型→無干涉CC數(shù)據(jù)→CL數(shù)據(jù);曲面模型→多面體模型→CL數(shù)據(jù);& #402; 曲面模型→偏置面模型→CL數(shù)據(jù);& #8222; 曲面模型→CC數(shù)據(jù)→無干涉CL數(shù)據(jù)。經(jīng)分析,在大型雕塑曲面的五軸聯(lián)動(dòng)加工中一般采用第& #8222;種方法生成刀位數(shù)據(jù),其刀位數(shù)據(jù)的生成過程如圖2所示的流程。
G( nT.\ x|U]x g/lv>*+gS BpDf4)| 3.1 五軸聯(lián)動(dòng)加工的刀位軌跡規(guī)劃
{3$ge 7eQ7\,^H 針對(duì)雕塑曲面零件的各張曲面的特點(diǎn),進(jìn)行合理的刀位軌跡規(guī)劃和計(jì)算,是在保證加工質(zhì)量要求的前提下高效率加工出大型零件關(guān)鍵的技術(shù)之一。如大型葉片數(shù)控加工的刀位軌跡規(guī)劃中,首先應(yīng)考慮葉片的流體動(dòng)力特性,確定和優(yōu)化走刀路徑。第二步應(yīng)根據(jù)葉片曲面幾何設(shè)計(jì)要求,控制和合理分配誤差[3],采用適合各曲面的刀具幾何形狀和參數(shù),合理確定走刀步長(zhǎng)和走刀行距計(jì)算出刀具切觸(CC)點(diǎn)的數(shù)據(jù)。大型曲面加工可采用等殘余高度規(guī)劃法搜索計(jì)算相鄰的CC軌跡,完成走刀行距計(jì)算。在大型雕塑曲面的刀位軌跡規(guī)劃中既要嚴(yán)格控制加工誤差,又要盡可能提高加工效率。目前的CNC系統(tǒng)在五軸聯(lián)動(dòng)控制時(shí)一般只有線性插補(bǔ)功能,而五軸聯(lián)動(dòng)加工的各軸的聯(lián)動(dòng)規(guī)律是復(fù)雜的非線性關(guān)系,在CAM系統(tǒng)中,由弦弓高誤差來近似確定加工誤差和進(jìn)給步長(zhǎng),而沒有考慮回轉(zhuǎn)軸的擺動(dòng)長(zhǎng)度對(duì)加工誤差的影響[3]。另外在大型葉片加工中,回轉(zhuǎn)軸的擺動(dòng)長(zhǎng)度一般都相對(duì)較大,這些非線性誤差對(duì)大型雕塑曲面加工加工尤為重要[3],可采用考慮三維非線性誤差來計(jì)算走刀步長(zhǎng)[2]。第三步,應(yīng)根據(jù)各曲面的曲率分布情況,確定合理的刀軸控制方式等,計(jì)算刀軸矢量,實(shí)現(xiàn)五軸聯(lián)動(dòng)刀位軌跡計(jì)算。
*Mg=IEu-6[ 3`n5[RV 3.2 五軸聯(lián)動(dòng)數(shù)控加工的刀軸矢量計(jì)算
TcpD*%wW f>\?\! 在五軸聯(lián)動(dòng)數(shù)控加工曲面的過程中,刀軸矢量是由定義在刀位軌跡上的局部坐標(biāo)系(Frenet坐標(biāo)架)的 λL(后跟角)和ωL(擺轉(zhuǎn)角)兩個(gè)角度來確定[2]。當(dāng) λL=ωL=0時(shí),為刀具軸垂在于表面的端銑方式,當(dāng)ωL=90°時(shí),為刀具軸平行于加工表面的側(cè)銑方式。刀軸控制方式是影響五軸聯(lián)動(dòng)加工效果的一個(gè)重要因素,其確定原則是獲得高的切削效率,同時(shí)考慮加工中可能存在的刀具干涉現(xiàn)象。另外,它對(duì)于刀具的切削壽命、機(jī)床的受力狀況等都有影響。五軸聯(lián)動(dòng)加工中刀軸控制的最高境界是具有隨曲面變化的自適應(yīng)能力,在避免干涉的前提下獲得最佳的加工效果。由于問題的復(fù)雜性,目前的CAM系統(tǒng)中一般在五軸聯(lián)動(dòng)端銑加工方式提供了Sturz方法,即人工輸入固定傾角,如何確定這兩個(gè)角度便成為雕塑曲面的五軸聯(lián)動(dòng)加工刀位軌跡計(jì)算的關(guān)鍵問題。
ah"2^x .o:Pe2C 在雕塑曲面零件的五軸聯(lián)動(dòng)加工刀位計(jì)算時(shí),根據(jù)各張曲面加工的特點(diǎn),確定其控制刀軸的姿態(tài)的兩個(gè)角度。實(shí)際加工表明,λL和ωL值太大,不僅降低加工效率,而且惡化了刀具的切削條件。對(duì)于小曲率的曲面,采用大直徑面銑刀,一般只需要調(diào)整λL即可。因此在實(shí)際工程中,為了提高計(jì)算效率,在確定刀軸矢量的時(shí)候,可以先不考慮刀桿與整個(gè)零件曲面的干涉(碰撞)情況而只考慮刀盤底面與加工點(diǎn)附近局部加工表面的干涉 (啃切)情況,其λL可以按如下的簡(jiǎn)化方法計(jì)算確定[2]。
>LgV[D#=&o H6/@loO!Xy 將通用加工刀具的刀具模型簡(jiǎn)化為半徑等于有效刀具半徑為Re=R1+R2sinλL的端銑刀,設(shè)加工表面的微分幾何結(jié)構(gòu)為凹橢圓點(diǎn)表面(即加工表面的主曲率K1和K2都大于零),銑刀與加工表面切觸于CC點(diǎn),在CC點(diǎn)建立局部坐標(biāo)系,設(shè)Kb和Kf分別為加工表面在CC點(diǎn)處沿b方向和f方向的法曲率。取Kε=max(Kf,Kb),通過推導(dǎo)分析,要刀盤與切觸點(diǎn)微區(qū)域間的不干涉,刀具的后跟角應(yīng)滿足:
MGX,JW>L
:?@d\c' sin λL ≧ KεRε (1)
$*b>c: M7eO5 由于刀具的有效切削半徑Rε是隨的λL變化而變化,并。
oE"! 6IPhy.8 λL = arcsin(KεRε )+2° (2)
kkyn>Wxv 6%U1%; 根據(jù)加工表面的曲率計(jì)算分析[2]確定曲面的局部性態(tài),在凹橢圓點(diǎn)外,雙曲點(diǎn)、凹拋物點(diǎn)可按上式計(jì)算,對(duì)于凸拋物點(diǎn)和凸橢圓點(diǎn), 。害薒 =2°即可。
I =qd\ Z